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additional explanatory text which was given during the 

presentation in form of voice over by the speakers.



SUMMARY &
BEST PRACTICES



CORE PLAYABLE = ∑ (ALL PROTOTYPES)

CORE PLAYABLE ≠ VERTICAL SLICE

(AND HELL YES! ≠ ALPHA)

TERMINOLOGY



WHAT IS A CORE PLAYABLE BUILD?

The sum of all Prototypes…
▪ Few core game mechanics

▪ No complete level

▪ No complete slice of the game in final quality

▪ Often consists partly or completely of placeholder 
graphics and assets only

▪ Proof of Fun:

▪ Is the basic game idea fun (for hours, days, weeks)?

▪ What does the player spend most of his time doing 
in the game?

▪ “What is your game’s centre of gravity?” (Sid Meier)



FOR COMPARISON

Vertical Slice Version

▪ Section of the game in final quality

▪ All assets in VS are in “shippable quality”

▪ No “throwaway code“

▪ Presentable to the outside world (press, trade 
fairs, end users/players)

▪ Built with final tools, pipelines and frameworks

▪ Final game = Vertical Slice, only more of it



Other commonly used terms

▪ First Playable / First Playable Prototype (FP / FPP)

▪ Proof of Concept Build

▪ Proof of Fun

▪ Core Prototype

▪ Final Prototype

▪ First Production Build

WHAT IS A CORE PLAYABLE BUILD?



Prototyping-Phase

WHEN IS A CORE PLAYABLE BUILD?



PROTOTYPING – BEST PRACTICE

Alignment in team and with publisher

▪ Define the clear goals for your core playable build

▪ Provide clear contract definitions for:

▪ Prototype(s)

▪ Core Playable

▪ Vertical Slice

▪ Alpha, Beta etc.



PROTOTYPING – BEST PRACTICE

Only most experienced team members 
for prototyping phase

▪ The smaller the prototyping team, the better:

▪ It's all about speed

▪ Quick agreements, iterative, "unbureaucratic

▪ Use the most senior team members:

▪ Everyone should be able to work independently 
and on their own responsibility

▪ A well-rehearsed approach is key!

▪ No room for egos (there never is…)



PROTOTYPING – BEST PRACTICE

One problem ➔ one prototype

▪ Each prototype should answer 
only one question

▪ This question must be clearly defined 
and communicated upfront

▪ Everyone in the team must understand 
the goal of the prototype

▪ Also define the criteria for success:

▪ When will you know that the 
prototype has fulfilled its purpose?



PROTOTYPING – BEST PRACTICE

Prioritise & parallelise

▪ If possible, work on several prototypes in parallel

▪ Keep an eye on possible dependencies

▪ Developing certain features may only make sense 
once others have already been implemented

▪ Prioritise the individual prototypes

▪ Never prototype already proven game mechanics 

▪ What for? What would you prove?



PROTOTYPING – BEST PRACTICE

What could possibly go wrong?
▪ Change your perspective (also check out

Jesse Schell, see book on the right).

▪ Instead of being confident, ask: what 
can go wrong?

▪ Which is the default publisher 
perspective anyway

▪ Be the devil’s advocate:

▪ What factors might prevent the 
game from being fun?

▪ This approach will help to set the right goals and 
priorities for your prototypes



PROTOTYPING – BEST PRACTICE

Don‘t waste any time!
▪ Efficiency beats everything during prototyping

▪ Active time boxing:

▪ No prototype longer than 1 week

▪ Even better: 3 prototypes a day (!)

▪ Remember: whatever you build, you’ll throw it away afterwards 
anyway - this is not about a beauty prize

▪ It's better to do as many iterations as quickly as possible – 
you'll learn a lot more

▪ Otherwise you run the risk of feature creep (watering down 
the idea and the core of your original prototype).



PROTOTYPING – BEST PRACTICE

Fail successfully
▪ Prototyping = Trial & Error

▪ Now is the time to try out even the 
supposedly crazy

▪ It's unlikely that even one idea will work 
the way you imagined it right away

▪ Even if you only know what doesn't work in the end: 
it’s better to realise now that an idea isn’t so 
great after all than halfway through production

▪ Fail early, fail often, learn from it and improve 
your prototypes constantly & consistently



PROTOTYPING – BEST PRACTICE

Avoid feature creep
▪ The problem with prototyping: you constantly have new (good) ideas.

▪ So keep an eye on your game vision:

▪ Does a new feature support your vision? Does it make the game better? 
Or does it rather distract from the core game idea?

▪ Prototyping is about finding out what your core game idea (and therefore the 
fun of the game) is all about

▪ Unnecessary ballast is more of a burden

▪ And if you inflate the scope of your prototype, how do you know what the 
problem is if it ends up not being fun?

▪ Focus, and give the Core Game Loop the opportunity to shine and 
convince in its sheer simplicity.



PROTOTYPING – BEST PRACTICE

„Toy“ & „Juiciness“
▪ Definitions of "toy" are often different, depending on 

the publisher/studio you are talking to

▪ Often: "Core game mechanics minus any rules or decisions"

▪ A toy is already fun for the sake of fun, without any additional 
rules or mechanics

▪ A game, on the other hand, has a more holistic approach with 
defined rules and goals

▪ This fun with the "toy" often requires what is called "juiciness".

▪ „Juicy“ = Feels alive. Every user input elicits an immediate – and 
satisfying – response from the environment

▪ Combination of graphics, animations, sound/FX and perfect interaction 
between camera and controls



PROTOTYPING – BEST PRACTICE

The best tool
▪ For rapid prototyping, any tool is allowed - the faster, the better.

▪ At this point, the choice of engine doesn't matter (even if you want 
to use Unity now and Unreal later - or vice versa).

▪ Take what you can get - and help yourself where you can, in the 
asset store (helpful especially for Toy & Juiciness, see prev. slide)

▪ Other possibilities:

▪ Gamemaker, Marmalade, etc. 

▪ Balsamiq, Flash

▪ MS PowerPoint

▪ Videos mit Adobe Premiere 

▪ usw.



PROTOTYPING – BEST PRACTICE

Pen & paper prototypes
▪ The archetype of game design, so to speak

▪ Can be applied to many genres (admittedly, 
e.g. an RPG is better suited than a shooter)

▪ Extendable into other forms of "physical" 
game design (e.g. level design with Lego 
bricks etc.)

▪ Example: Hearthstone
(https://hearthstone.gamepedia.com/Design_and_development_of_Hearthstone) 



PROTOTYPING – BEST PRACTICE

And in the end... throw it all away!
▪ Prototyping = Trial & Error

▪ Never build a final code base on a quick & dirty 
prototyping framework

▪ Even if it may sound strange: it is quicker to set up and 
programme everything (cleanly) a second time

▪ Take all the "learnings" with you and start completely 
from scratch

▪ Be prepared: might become a bit difficult at times to explain 
to your publisher ("What, you want to throw it all away? 
But we paid for it...????") -> but stick to it!



PROTOTYPING – BEST PRACTICE

More tips and tricks
▪ For almost (!) every genre an elementary part of prototyping -> CCC

▪ Camera

▪ Character

▪ Controls 

▪ Balancing: always increases/decreases values in large steps 
- e.g. 100% or even 200% steps:

▪ Too many baby steps make it difficult for you to see any 
noticeable difference at all

▪ If 100% was too much, try half (i.e. 50%) and so on

▪ This way you will get closer to the right value much faster

▪ Often 100% is still too little - you will be surprised



PROTOTYPING – BEST PRACTICE

Producer‘s Checklist
✓ Agree on the objective for core playable internally & with your publisher

✓ Define clear goals for each single prototype

✓ Tackle only one problem per prototype 

✓ Create many smaller prototypes in parallel, rather than one large one

✓ Prioritize the order in which you create your prototypes 

✓ Determine metrics on how to measure whether you were successful

✓ Don’t prototype already proven game mechanics

✓ Approach your prototypes from a "what can go wrong" perspective 

✓ Be efficient: always try to test what you have within the shortest possible time frame 

✓ Embrace failure: fail fast, fail a lot, learn and improve

✓ Avoid feature creep

✓ Try to make your prototypes juicy and focus on having a toy

✓ Choose the fastest rapid prototyping tool for your purpose 

✓ Throw away your code at the end of prototyping and start from scratch once in production
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